Department of Mathematics and Statistics Indian Institute of Technology Kanpur MTH101AR Quiz 1 A February 1, 2013

Roll No:

Time: 30 Min Marks: 15

Name:

- 1. For the sequence $\{x_n\}$, where $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$, show that (i) $\lim_{n \to \infty} x_n$ exists (ii) $\lim_{n \to \infty} x_n$ lies between 1/2 and 1. **Solution:** (i) $\{x_n\}$ is an increasing sequence, since (5)
 - $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} < \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} + \frac{1}{n+n+1} = x_{n+1}$ (1 mark)

 $\{x_n\}$ is bounded above, since $x_n < \frac{n}{n+1} < 1$, for all $n = 1, 2, ... \Rightarrow \lim_{n \to \infty} x_n$ exists (2 marks)

(ii)
$$\frac{n}{n+n} \le x_n \le \frac{n}{n+1} \Longrightarrow \frac{1}{2} \le \lim_{n \to \infty} x_n \le 1$$
 (2 marks)

2. Let a function $f:[a, b] \to R$ be continuous and $c \in (a, b)$. if f(c) > 0 then prove that, for some $\delta > 0$, f(x) > 0 in interval $(c - \delta, c + \delta)$ contained in (a, b). (5)

Solution: f continuous at $c \Rightarrow f(c) - \varepsilon < f(x) < f(c) + \varepsilon$, for x in some small interval $(c - \delta, c + \delta)$ contained in (a, b), some $\delta > 0$. Since f(c) > 0, choose $0 < \varepsilon < f(c)$ so that the left hand side inequality gives f(x) > 0 in $(c - \delta, c + \delta)$. (0, 3 or 5 marks) Alternatively, let $\delta > 0$ does not exist such that f(x) > 0 in interval $(c - \delta, c + \delta)$. Then, in every interval $\left(c - \frac{1}{n}, c + \frac{1}{n}\right), n > N$, contained in (a, b), there exists an x_n , such that $f(x_n) \le 0 \Rightarrow \lim_{x \to \infty} f(x_n) \le 0 \Rightarrow f(c) \le 0$, a contradiction. (0, 3 or 5 marks)

3. For the function $h(x) = x e^{-x^2}$, determine (i) the points of maxima (ii) points of minima (iii) the points of inflection.

Solution :
$$h'(x) = e^{-x^2}(1-2x^2)$$
, $h''(x) = e^{-x^2}(4x^3-6x)$
 $\Rightarrow x = \frac{1}{\sqrt{2}}$ is point of maxima, $x = \frac{-1}{\sqrt{2}}$ is point of minima , since $h'(\pm \frac{1}{\sqrt{2}}) = 0$, $h''(\frac{1}{\sqrt{2}}) < 0$, $h''(-\frac{1}{\sqrt{2}}) > 0$
(1 marks for each correct)
 $x = 0, \pm \sqrt{\frac{3}{2}}$ are points of inflection, since $h''(0) = h''(\pm \sqrt{\frac{3}{2}}) = 0$, $h''(-\epsilon) > 0$, $h''(\epsilon) < 0$, $h''(\pm \sqrt{\frac{3}{2}} - \epsilon) < 0$
and $h''(\pm \sqrt{\frac{3}{2}} + \epsilon) > 0$ for sufficiently small $\epsilon > 0$.
(1 mark for each correct)

No marks if an answer is not supported with correct justification.

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MTH101AR Quiz 1 B February 1, 2013

Roll No:

Name:

- 1. For the sequence $\{x_n\}$, where $x_n = \frac{1}{n+2} + \frac{1}{n+4} + \dots + \frac{1}{3n}$, show that (i) $\lim_{n\to\infty} x_n$ exists (ii) $\lim_{n\to\infty} x_n$ lies between 1/3 and 1. Solution: (i) $\{x_n\}$ is an increasing sequence, since
 - $x_{n} = \frac{1}{n+2} + \frac{1}{n+4} + \dots + \frac{1}{n+2n} < \frac{1}{n+2} + \frac{1}{n+4} + \dots + \frac{1}{n+2n} + \frac{1}{3n+3} = x_{n+1}$

 $\{x_n\}$ is bounded above, since $x_n < \frac{n}{n+2} < 1$, for all $n = 1, 2, ... \Rightarrow \lim_{n \to \infty} x_n$ exists

- (ii) $\frac{n}{n+2n} \le x_n \le \frac{n}{n+2} \Rightarrow \frac{1}{3} \le \lim_{n \to \infty} x_n \le 1$
- 2. Let a function $f:[a, b] \to R$ be continuous and $c \in (a, b)$. if f(c) < 0 then prove that, for some $\delta > 0$, f(x) < 0 in interval $(c - \delta, c + \delta)$ contained in (a, b). (5)

Solution: f continuous at $c \Rightarrow f(c) - \varepsilon < f(x) < f(c) + \varepsilon$, for x in some small interval $(c - \delta, c + \delta)$ contained in (a, b), some $\delta > 0$. Since f(c) < 0, choose $\varepsilon < -f(c)$ so that the right hand side inequality gives f(x) < 0 in $(c-\delta, c+\delta)$).

Alternatively, let $\delta > 0$ does not exist such that f(x) < 0 in interval $(c - \delta, c + \delta)$. Then, in every interval $\left(c-\frac{1}{n}, c+\frac{1}{n}\right), n > N$, contained in (a, b), there exists an such that x_n , $f(x_n) \ge 0 \Rightarrow \lim_{n \to \infty} f(x_n) \ge 0 \Rightarrow f(c) \ge 0$, a contradiction.

3. For the function $h(x) = x e^{-2x^2}$, $-\infty < x < \infty$, determine (i) the points of maxima (ii) points of minima (iii) the points of inflection.

Solution :
$$h'(x) = e^{-2x^2}(1-4x^2)$$
, $h''(x) = e^{-2x^2}(16x^3-12x)$
 $\Rightarrow x = \frac{1}{2}$ is point of maxima, $x = -\frac{1}{2}$ is point of minima, since $h'(\pm\frac{1}{2}) = 0$, $h''(\frac{1}{2}) < 0$, $h''(-\frac{1}{2}) > 0$.
(1 mark for each correct)
 $x = 0, \pm \frac{\sqrt{3}}{2}$ are points of inflection, since $h''(0) = h''(\pm\frac{\sqrt{3}}{2}) = 0$, $h''(-\epsilon) > 0$, $h''(\epsilon) < 0$, $h''(\pm\frac{\sqrt{3}}{2}-\epsilon) < 0$
and $h''(\pm\frac{\sqrt{3}}{2}+\epsilon) > 0$ for sufficiently small $\epsilon > 0$.
(1 mark for each correct)

Time: 30 Min Marks: 15

(5)

No marks if an answer is not supported with correct justification.

Graph of $h(x) = xe^{-x^2}$: $-\sqrt{\frac{3}{2}} - \frac{1}{\sqrt{2}}$ 0 $\frac{1}{\sqrt{2}} \sqrt{\frac{3}{2}}$