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1. For the sequence {X.}, where X, = + +..+ ! show that (i) limx, exists (i) lim X lies
' ' n+l n+2 ~ 2n’ fiyes hes
between 1/2 and 1. (5)
Solution: (i) {Xn} is an increasing sequence, since
1 1 1 1 1 1 1
X, = + +ot < + +ot + =X, (1 mark)
n+l n+2 n+n n+l n+2 n+n n+n+1
n .
{x,} is bounded above, since X, <——<1,forall N=1,2,... = lim X exists (2 marks)
n+1 n—e
n n 1 ..
(ii) <x < ==<limx <1 (2 marks)
n+n % n+l 2 n—woxn
2. Let a function f :[a, b] — R be continuous and Cce (a, b). if f (c) >0 then prove that, for somed >0,

f(x) >0 ininterval (C—&, C+ ) contained in (&, b). (5)

Solution: f continuous at ¢ = f(c)—e< f(X)< f(c)+&, for x in some small interval (C—J, C+9)
contained in (a, b), some &> 0. Since f(c) >0, choose 0< &< f(C) so that the left hand side inequality
gives f(x)>0 in (0—5, C+5). (0, 3 or 5 marks)

Alternatively, let d >0 does not exist such that f(X) >0 in interval (C—J, C+J). Then, in every interval

1 1
(C——, C+—j, n>N,, contained in (a, b), there exists an Xn such that
n n

f(x,)<0=lim f(x,) <0= f(c)<0, a contradiction. (0, 3 or 5 marks)
N—co

2
For the function h(X) = xe* , determine (i) the points of maxima (ii) points of minima (iii) the points of
inflection.

. ’ _x2 2 4 _x2 3
Solution:h'(x) =e " (1-2x°), h"(X)=¢e" (4Xx°—6X)
1 . . . _1 . . .. . ’ 1 ’7” 1 ’” 1
— X=—=is point of maxima, X=—= is point of minima, since h'(x—) =0, h"(—=) <0,h"(-—=) >0
J2 2 2 2

72 72 72

(2 marks for each correct)

x=0, i\/g are points of inflection, since h”(0) = h”(i\/g) =0,h"(-e)>0,h"(e) <0, h”(i\/g—e) <0
and h”(i\/§+ €) > Ofor sufficiently small €> 0. (1 mark for each correct)

No marks if an answer is not supported with correct justification.
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1. Forthe sequence , Where =——+—+...+—, show that
%} % n+2 n+4 3n

(i) limx, exists (i) lim X, lies between 1/3 and 1. (5)
N—co N—oo
Solution: (i) {X,} is an increasing sequence, since
1 1 1 1 1 1 1
= + +ot < + +ot +
n+2 n+4 n+2n n+2 n+4 n+2n 3n+3

= Xn+1

n .
is bounded above, since X, <——<1,forall n=1,2,... = lim X_ exists
Xn X X

n+2 n—eo
i —<x <"~ Lojimx <1
n+2n_X”_n+2 3_n—>wX”_

2. Let a function f:[a, b]— R be continuous and ce (&, b). if f(c) <O then prove that, for somed >0,

f (X) <0 ininterval (C—5, c+ 5) contained in (a, b) . (5)
Solution: f continuous at ¢ = f(c)—&< f(X) < f(c)+¢, for x in some small interval (C—J, C+ ) contained in
(a, b), some 0>0. Since f () <0, choose &£ <—f(C) so that the right hand side inequality gives f(X) <0 in
(c—d,c+0)).

Alternatively, let 0 >0 does not exist such that f(X)<O in intervaI(C—§, C+5). Then, in every interval

1 1
(C——, c+— |, n>N, contained in (a, b), there exists an Xn such that
n n

f(X,)20=lim f(x,) 0= f(c) =0, a contradiction.
N—soo

2
3. For the function h(X) = Xe 2X"  —o0 < X< oo, determine (i) the points of maxima (ii) points of minima (iii) the

points of inflection.
Solution : h'(x) = &2 (1 4x2), h'(x) = 62X (16x° —12x)

= X :% is point of maxima, X = —% is point of minima, since h'(i%) =0, h"(%) <0, h"(—%) >0

(1 mark for each correct)

3

2

3

x=0, i; are points of inflection, since h”(0)=h"(z—)=0,h"(-€) >0,h"(€) <0, h”(-|_'7—e) <0

3

and h"(i7+e) > Ofor sufficiently small €> 0. (1 mark for each correct)



No marks if an answer is not supported with correct justification.

Graph of h(x) = xe™ :
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