Department of Mathematics and Statistics
 Indian Institute of Technology Kanpur
 MTH101AR Quiz 1 A
 February 1, 2013

Roll No: \qquad Time: 30 Min
Marks: 15
Name: \qquad

1. For the sequence $\left\{x_{n}\right\}$, where $x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}$, show that (i) $\lim _{n \rightarrow \infty} x_{n}$ exists (ii) $\lim _{n \rightarrow \infty} x_{n}$ lies between $1 / 2$ and 1 .
Solution: (i) $\left\{x_{n}\right\}$ is an increasing sequence, since
$x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n}<\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n}+\frac{1}{n+n+1}=x_{n+1}$
(1 mark)
$\left\{x_{n}\right\}$ is bounded above, since $x_{n}<\frac{n}{n+1}<1$, for all $n=1,2, \ldots \Rightarrow \lim _{n \rightarrow \infty} x_{n}$ exists \quad (2 marks)
(ii) $\frac{n}{n+n} \leq x_{n} \leq \frac{n}{n+1} \Rightarrow \frac{1}{2} \leq \lim _{n \rightarrow \infty} x_{n} \leq 1$
(2 marks)
2. Let a function $f:[a, b] \rightarrow R$ be continuous and $c \in(a, b)$. if $f(c)>0$ then prove that, for some $\delta>0$, $f(x)>0$ in interval $(c-\delta, c+\delta)$ contained in (a, b).

Solution: f continuous at $c \Rightarrow f(c)-\varepsilon<f(x)<f(c)+\varepsilon$, for x in some small interval $(c-\delta, c+\delta)$ contained in (a, b), some $\delta>0$. Since $f(c)>0$, choose $0<\varepsilon<f(c)$ so that the left hand side inequality gives $f(x)>0$ in $(c-\delta, c+\delta)$.
(0,3 or 5 marks)
Alternatively, let $\delta>0$ does not exist such that $f(x)>0$ in interval $(c-\delta, c+\delta)$. Then, in every interval $\left(c-\frac{1}{n}, c+\frac{1}{n}\right), n>N, \quad$ contained in (a, b), there exists an x_{n}, such that $f\left(x_{n}\right) \leq 0 \Rightarrow \lim _{n \rightarrow \infty} f\left(x_{n}\right) \leq 0 \Rightarrow f(c) \leq 0$, a contradiction. (0,3 or 5 marks)
3. For the function $h(x)=x e^{-x^{2}}$, determine (i) the points of maxima (ii) points of minima (iii) the points of inflection.
Solution : $h^{\prime}(x)=e^{-x^{2}}\left(1-2 x^{2}\right), h^{\prime \prime}(x)=e^{-x^{2}}\left(4 x^{3}-6 x\right)$ $\Rightarrow x=\frac{1}{\sqrt{2}}$ is point of maxima, $x=\frac{-1}{\sqrt{2}}$ is point of minima, since $h^{\prime}\left(\pm \frac{1}{\sqrt{2}}\right)=0, h^{\prime \prime}\left(\frac{1}{\sqrt{2}}\right)<0, h^{\prime \prime}\left(-\frac{1}{\sqrt{2}}\right)>0$
(1 marks for each correct)
$x=0, \pm \sqrt{\frac{3}{2}}$ are points of inflection, since $h^{\prime \prime}(0)=h^{\prime \prime}\left(\pm \sqrt{\frac{3}{2}}\right)=0, h^{\prime \prime}(-\in)>0, h^{\prime \prime}(\in)<0, h^{\prime \prime}\left(\pm \sqrt{\frac{3}{2}}-\epsilon\right)<0$ and $h^{\prime \prime}\left(\pm \sqrt{\frac{3}{2}}+\epsilon\right)>0$ for sufficiently small $\in>0$. (1 mark for each correct)

No marks if an answer is not supported with correct justification.

Department of Mathematics and Statistics
 Indian Institute of Technology Kanpur
 MTH101AR Quiz 1 B
 February 1, 2013

Roll No: \qquad

Name: \qquad

1. For the sequence $\left\{x_{n}\right\}$, where $x_{n}=\frac{1}{n+2}+\frac{1}{n+4}+\ldots+\frac{1}{3 n}$, show that
(i) $\lim _{n \rightarrow \infty} x_{n}$ exists
(ii) $\lim _{n \rightarrow \infty} x_{n}$ lies between $1 / 3$ and 1.

Solution: (i) $\left\{x_{n}\right\}$ is an increasing sequence, since
$x_{n}=\frac{1}{n+2}+\frac{1}{n+4}+\ldots+\frac{1}{n+2 n}<\frac{1}{n+2}+\frac{1}{n+4}+\ldots+\frac{1}{n+2 n}+\frac{1}{3 n+3}=x_{n+1}$
$\left\{x_{n}\right\}$ is bounded above, since $x_{n}<\frac{n}{n+2}<1$, for all $n=1,2, \ldots \Rightarrow \lim _{n \rightarrow \infty} x_{n}$ exists
(ii) $\frac{n}{n+2 n} \leq x_{n} \leq \frac{n}{n+2} \Rightarrow \frac{1}{3} \leq \lim _{n \rightarrow \infty} x_{n} \leq 1$
2. Let a function $f:[a, b] \rightarrow R$ be continuous and $c \in(a, b)$. if $f(c)<0$ then prove that, for some $\delta>0$, $f(x)<0$ in interval $(c-\delta, c+\delta)$ contained in (a, b).
Solution: f continuous at $c \Rightarrow f(c)-\varepsilon<f(x)<f(c)+\varepsilon$, for x in some small interval $(c-\delta, c+\delta)$ contained in (a, b), some $\delta>0$. Since $f(c)<0$, choose $\varepsilon<-f(c)$ so that the right hand side inequality gives $f(x)<0$ in $(c-\delta, c+\delta))$.

Alternatively, let $\delta>0$ does not exist such that $f(x)<0$ in interval $(c-\delta, c+\delta)$. Then, in every interval $\left(c-\frac{1}{n}, c+\frac{1}{n}\right), n>N, \quad$ contained in $\quad(a, b)$ there exists an x_{n}, such that $f\left(x_{n}\right) \geq 0 \Rightarrow \lim _{n \rightarrow \infty} f\left(x_{n}\right) \geq 0 \Rightarrow f(c) \geq 0$, a contradiction.
3. For the function $h(x)=x e^{-2 x^{2}},-\infty<x<\infty$, determine (i) the points of maxima (ii) points of minima (iii) the points of inflection.

Solution : $h^{\prime}(x)=e^{-2 x^{2}}\left(1-4 x^{2}\right), h^{\prime \prime}(x)=e^{-2 x^{2}}\left(16 x^{3}-12 x\right)$
$\Rightarrow x=\frac{1}{2}$ is point of maxima, $x=-\frac{1}{2}$ is point of minima, since $h^{\prime}\left(\pm \frac{1}{2}\right)=0, h^{\prime \prime}\left(\frac{1}{2}\right)<0, h^{\prime \prime}\left(-\frac{1}{2}\right)>0$
(1 mark for each correct)
$x=0, \pm \frac{\sqrt{3}}{2}$ are points of inflection, since $h^{\prime \prime}(0)=h^{\prime \prime}\left(\pm \frac{\sqrt{3}}{2}\right)=0, h^{\prime \prime}(-\epsilon)>0, h^{\prime \prime}(\in)<0, h^{\prime \prime}\left(\pm \frac{\sqrt{3}}{2}-\epsilon\right)<0$ and $h^{\prime \prime}\left(\pm \frac{\sqrt{3}}{2}+\epsilon\right)>0$ for sufficiently small $\in>0$.
(1 mark for each correct)

No marks if an answer is not supported with correct justification.

Graph of $h(x)=x e^{-x^{2}}:$

